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Abstract—In this study, we design and implement two algo-
rithms for dynamic spectrum access (DSA) that are based on
survival analysis. They use a non-parametric estimate of the
cumulative hazard function to predict the remaining idle time
available for secondary transmission subject to the constraint of
a preset probability of successful completion. To show that the
algorithms are effective in real-world scenarios even at fine time
scales, we evaluate their performance using data collected from
an LTE band to model primary user activity. The algorithms
are run in different configurations, i.e., they are trained and run
on a few combinations of data sets. Our results show that as
long as the cumulative hazard functions are fairly similar across
datasets, the algorithms can be trained on one day’s dataset and
run on that of another day’s without any significant degradation
of performance. The algorithms achieve fairly high white space
utilization and have a measured probability of interference which
always stays below the preset threshold.

I. INTRODUCTION

Dynamic spectrum access (DSA) seems poised to mitigate
the problem of spectrum scarcity. In a typical DSA scenario,
a primary user (PU) has priority access to a given band. A
secondary user (SU) can transmit during unoccupied (idle)
periods opportunistically but must vacate when the PU needs
the band again. In order to make efficient use of the spectrum
in a DSA environment, an accurate and useful model of
spectrum occupancy is needed.

Spectrum occupancy refers to whether or not a particular
channel or band is occupied. In this paper, we use the term
channel to denote the smallest allocable range of frequencies
within a particular communications technology, e.g., 180 kHz
for LTE. A band is comprised of multiple channels and
represents a single service, e.g., there are 50 channels in a 10
MHz LTE uplink band. We model the occupancy of a given
channel as a two-state (binary) random process similar to that
used by Spaulding and Hagn [1]:

X(t) =

{
1 if PR(t) > Pth
0 otherwise (1)

where PR(t) is the signal power observed at the receiver at
time t and Pth is a threshold value. X(t) = 1 represents the
occupied state and X(t) = 0 represents the unoccupied state.

A. Previous Work

Various models have been proposed in the literature for
spectrum occupancy. A two state Discrete-Time Markov Chain

(DTMC) has been used to model spectrum occupancy in [2].
However, stationary DTMC models have been found to be
inadequate to represent idle and busy periods. Hence, au-
thors in [2] have proposed a time-inhomogeneous DTMC
model. Some authors have also used semi-Markov models
for spectrum occupancy [3]. This study assumes a general
distribution (rather than exponential) for the idle and busy
periods of the spectrum. Further, since there are only two
states (ON/OFF), the process is also analyzed as an Alternating
Renewal Process [3], [4].

Continuous-Time Markov Chain (CTMC) based models
have also been used to represent spectrum idle and busy
periods. Since some measurement studies have shown that
the ON and OFF periods of spectrum are not exponentially
distributed, authors in [5], [6], [7] have used semi-Markov
models for the purpose.

Model occupancy of adjacent channels has been modeled as
a two-dimensional Markov chain by Gibson and Arnett in [8],
[9].

Some studies have shown that busy and idle periods of spec-
trum exhibit negative correlation, i.e., the idle period following
a long busy period is typically short and vice-versa [10]. In
this study, the authors have proposed time-correlation models
for periodic and non-periodic auto-correlation functions.

There have been few models proposed for predicting spec-
trum occupancy, which is critical to allocating spectrum to the
secondary users. The Partially-Observable Markov Decision
Process (POMDP) model has been proposed in [11]. The
spectrum sharing scheme proposed in [12] is based on predic-
tion of spectrum occupancy by the primary users in terms of
the expected remaining OFF time. A two state semi-Markov
model proposed in [3] is used to estimate the distribution
parameters of ON/OFF periods. Some methodologies proposed
in the literature indirectly predict spectrum occupancy by
limiting the duration of transmission of the secondary user
(SU) to some constraint. In [13], the transmission duration
of an SU is based on the maximum bound on probability
of interference to the primary user (PU). Residual idle time
of an Alternating Renewal Process is used in [4] to indi-
rectly predict reappearance of the PU. Some researchers have
used a Restless Multiarm Bandit formulation for opportunistic
channel access [14], [15]. Researchers have also looked at
pattern mining of spectrum occupancy data to predict channel
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availability [16], [17].

B. Motivation for Present Work

The motivation behind the present work is threefold. We
want to develop a prediction scheme that is robust, flexible and
useful even for very fine time scales. We assume centrally co-
ordinated scheduling for the SUs. The scheduler knows when
the primary user is no longer active, and when an SU requests a
transmission opportunity, the scheduler grants or denies the SU
request. Our scheme is not limited to a centralized scheduling
architecture, however. It can be used in a carrier sense multiple
access (CSMA) system as well. In such a system, the SUs
would sense the channel and use our algorithms to predict
residual idle time before transmitting as a form of collision
avoidance. Analysis and application of prediction schemes
presented in this paper to a CSMA based system is beyond
the scope of this study.

Most of the stochastic based schemes in the literature either
assume a certain distribution (e.g., exponential) of spectrum
occupancy data or require that a distribution be fitted to a set
of observed data. This study does not have such a requirement.
It uses a non-parametric estimate of the cumulative hazard
function from historical data to grant dynamic access to the
SUs. Hence, our scheme is much simpler to implement in
practice.

Finally, most of the DSA schemes in the literature are
run over simulated spectrum occupancy data. We ran our
algorithms over real spectrum occupancy data to show that
they are suitable for implementation on practical systems. We
show the effectiveness of our DSA algorithms over LTE Band
17, which is centered at 709 MHz with a 10 MHz bandwidth
in the uplink.

We also envision that our scheme (or some variation thereof)
may be used in the Spectrum Sharing architecture proposed
in the 3.5 GHz band [18]. In this architecture, there will be
three tiers of users in the band. First tier users have the highest
priority, but they use the band infrequently. The tier two users,
called Priority Access Layer (PAL) users, will likely be LTE
carriers and have medium priority. When tier 1 and tier 2 users
are not present in the band, it can be used by tier 3 users called
General Authorized Access (GAA) users. It is conceivable that
a PAL user can sell its white spaces (idle times) to users who
can make use of transmission opportunities of the order of
hundreds of milliseconds as long as the interference to PAL
users remains below an agreed threshold. These opportunistic
users can implement our scheme to exploit PAL white spaces.

Let us now define the prediction problem upon which our
DSA algorithms are based more precisely. We are concerned
with how long the channel has been unoccupied by the PU
and how much longer the channel will remain unoccupied.
Specifically, given that the channel has been unoccupied by the
PU for duration t and a request from an SU arrives to transmit
for a duration τ , what is the probability that the SU will be
able to complete the transmission before the PU appears on
the channel? Figure 1 illustrates the relationship between the
PU and SU.

Fig. 1. SU request

The remainder of this paper is structured as follows. Section
II formulates the prediction problem in terms of survival
analysis, resulting in two algorithms for secondary channel
requests. Section III describes the collected data, simulation
environment and metrics we used to evaluate the algorithms.
Section IV presents our results. Section V interprets the results
and discusses future work.

II. PREDICTION ALGORITHMS

A. Survival Analysis

Survival analysis has been used to analyze statistical prop-
erties of the duration of time until an event, such as failure
in a mechanical system, occurs [19]. Our prediction problem
can be solved by using survival analysis as presented below.

Let T1, S1, T2, S2, . . ., represent the successive idle and
busy periods of the spectrum. Thus Ti and Si represent the
ith idle and busy periods respectively. The Ti’s can be thought
of as survival times. That is, an idle period survives only
until the channel becomes busy again. Let random variable
T represent an arbitrary survival time and 0 < p < 1 an
adjustable parameter. Assuming the Ti are independent and
identically distributed as T , our prediction problem can be
represented by the hypothesis testing problem given by

H0 : P [T ≥ t+ τ | T ≥ t] > p versus

H1 : P [T ≥ t+ τ | T ≥ t] ≤ p (2)
H0 holds if the idle period, having lasted t units of time, lasts
τ more units of time with probability greater than p. Note
that p represents the probability of successful transmission for
duration τ , given that the channel has been idle for duration
t.

The basic functions of survival analysis are the survival
function and the hazard function. The survival function at time
t is the probability of surviving at least t units of time and is
given by

S(t) = P [T ≥ t] = 1− F (t) =
∫ ∞
t

f(s)ds (3)

where f(s) and F (t) are the probability density function and
cumulative distribution function of T , respectively. The hazard
function is the probability of instantaneous failure at time t
given survival up to time t and indicates the risk of failure at
time t. The hazard function is given by

h(t) = lim
δt→0

P [t ≤ T < t+ δt | T ≥ t]
δt

= lim
δt→0

P [t ≤ T < t+ δt]

P [T ≥ t] · δt

=
1

P [T ≥ t]
· lim
δt→0

P [t ≤ T < t+ δt]

δt

=
f(t)

S(t)
(4)
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From (3), it is clear that the derivative of S(t) is −f(t). Hence,
(4) can be rewritten as

h(t) = − d

dt
logS(t) (5)

Now integrating both sides of (5) from 0 to t, noting that
S(0) = 1 and finally taking the exponential on both the sides,
we have

S(t) = exp

(
−
∫ t

0

h(s)ds

)
(6)

The function important to us is the cumulative hazard function,
defined by H(t) =

∫ t
0
h(s)ds, t ≥ 0. Using (6) we have

P [T ≥ t+ τ | T ≥ t] = P [T ≥ t+ τ ]

P [T ≥ t]

= exp

(
−
∫ t+τ

0

h(s) +

∫ t

0

h(s)ds

)
= exp(−[H(t+ τ)−H(t)]). (7)

Thus, using (7) the hypotheses in (2) can be expressed as
H0 : exp(−[H(t+ τ)−H(t)]) > p versus

H1 : exp(−[H(t+ τ)−H(t)]) ≤ p (8)
Having observed a large sample T1, T2, . . . , Tn of n survival

times, a non-parametric estimate of the survival function can
be computed using the empirical distribution function, Fn(t)
of the data Ti, i = 1, . . . , n, as shown below.

Sn(t) = 1− Fn(t) = 1− 1

n

n∑
i=1

1Ti<t (9)

where 1A is the indicator function for event A.
Let T(1) ≤ T(2) · · · ≤ T(n) be the ordered Ti, i = 1, . . . , n.

Then the survival function at any T(i) can be computed using
(9) as follows.

Sn(T(i)) = 1− 1

n

n∑
j=1

1Tj<T(i)

= 1− 1

n
· (i− 1) =

n− i+ 1

n
(10)

In the above derivation, we used the fact that exactly (i− 1)
values of Ti are strictly less than T(i). Each T(i), 1 ≤ i ≤ n,
has an estimated probability of occurence of 1

n . Hence,

fn(T(i)) =
1

n
(11)

Using (10) and (11) in (4) we have

hn(T(i)) = 1
n−i+1 for i = 1, 2, · · · , n

hn(t) = 0 for all other t

Using the definition of the cumulative hazard function, an
estimate is given by

Hn(t) =
∑

i:T(i)≤t

1

n− i+ 1
(12)

Our test statistic is based on the difference of the cumulative
hazard function at two different times. An estimate for the
difference of the cumulative hazard function at two different
times is given by

Hn(t+ τ)−Hn(t) =
∑

i:t≤T(i)≤t+τ

1

n− i+ 1
(13)

Note that this is a form of the well-known Nelson-Aalen
estimator for the cumulative hazard function. We used a more
general form of Hn(t) to account for duplicate values of T(i),

that is, multiple idle times of the same duration [20]. There-
fore, after simple manipulation of H0 in (8), our prediction
algorithms are formulated in terms of an approximate test
statistic,

Reject H0 if : Hn(t+ τ)−Hn(t) ≥ (− ln p). (14)

B. Definition of Algorithms
Below are two formulations of the prediction algorithm.

The first is a request to transmit on a channel for duration τ .
If the channel is occupied at the time of request, the request
is denied. If the channel is not occupied, then the algorithm
grants the request if it determines that the probability of a
successful transmission (i.e., the probability of completing
the transmission without colliding with the PU) is above a
given threshold.

Algorithm 1 Request channel for τ seconds
input:
τ - the transmit duration requested
parameters:
Hn(t) - the estimated cumulative hazard function
t0 - the time elapsed since end of last transmission
p - the probability of successful transmission
output: Grant or Deny

if occupied then
return Deny

end if
θ := − ln p
Wn := Hn(t0 + τ)−Hn(t0)
if Wn < θ then

return Grant
else

return Deny
end if

The second algorithm returns the longest estimated duration
available for transmission for a request made at a particular
time. The time returned is the largest value for which the prob-
ability of successful transmission exceeds the given threshold.

Algorithm 2 Request maximum channel availability
parameters:
Hn(t) - the estimated cumulative hazard function
{T(i)} - the n ranked idle times used to compute Hn(t)
t0 - the time elapsed since end of last transmission
p - the probability of successful transmission
output: τ - the maximum transmit time available now

if occupied then
return 0

end if
θ := − ln p
Find largest τ in [0, T(n)] such that Hn(t0+τ)−Hn(t0) < θ
return τ
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III. EVALUATION

To evaluate the algorithms, we used real LTE uplink spec-
trum occupancy data to represent our primary user occupancy.
Secondary user requests for spectrum were simulated using a
Poisson arrival model, i.e., the SU request inter-arrival times
were exponentially distributed.

A. Data Collection

Data was collected in Band 17, a 10 MHz uplink LTE
band centered at 709 MHz. A small 10.78 cm rubber duck
antenna was connected to an Ettus Universal Sofware Radio
Peripheral (USRP) 1 running USRP hardware driver (UHD)
version 003.009.001 and GNU Radio version 3.7.9rc1. The
output is a 56 point power spectrum computed every 100 ms.
Each power spectrum coefficient is an 8 bit signed integer
representing a decibel (dB) value rounded to the nearest
integer. Each coefficient corresponds to peak power in dB over
a 180 kHz range. The middle 50 coefficients correspond to the
50 LTE channels. We applied a noise threshold power value
to produce a binary occupancy sequence for each of the 50
channels. We looked at all the different power values collected
and picked the 75th percentile value as the noise threshold.
For the data collected, the threshold turned out to be −67 dB.
The idle time distributions for day1 and day2 are presented in
Table I.

Data was collected for two continuous 48 hour periods. The
first 48 hours ran from 2:00 PM UTC (9:00 AM local time)
Monday, February 1, 2016 to 2:00 PM UTC on Wednesday,
February 3, 2016. The second dataset covers weekend hours,
2:00 PM UTC Saturday, February 27, 2016 to 2:00 PM UTC
Monday, February 29, 2016. Each 48 hour data set is split into
two parts, each containing 24 hours of data. Thus, the data
captured from Monday 9 AM to Tuesday 9 AM is designated
as day1 data, and the data captured from Tuesday 9 AM
to Wednesday 9 AM is designated as day2. Similarly, the
weekend data is termed as wknd1 and wknd2.

B. Simulation

As stated above, an idle period of the spectrum occupancy
is a set of one or more consecutive zeros. Each zero represents
an idle period with a duration of one sampling interval (100 ms
for our experiments). Thus, the Ti values (in terms of sampling
interval) are represented as the number of consecutive zeros.
Similarly, a busy period is a set of one or more consecutive
ones. In our experiments, we have used the occupancy of LTE
uplink channel number 5 as our PU traffic. After building the
idle and busy periods, we then compute the cumulative hazard
function as per (13). We have set the probability of successful
transmission (p) to 0.9. Thus, the interference threshold, which
is equal to (1− p), is set to 0.1. Note that the PU expects its
measured probability of interference (PoI) to be less than this
preset interference threshold.

1The identification of any commercial product or trade name does not
imply endorsement or recommendation by the National Institute of Standards
and Technology, nor is it intended to imply that the materials or equipment
identified are necessarily the best available for the purpose.

We have evaluated the performance of Algorithm 1 and
Algorithm 2 in different configurations as described below.
The configurations are denoted as train run, where train is
the data used for training the algorithm (i.e., the cumulative
hazard function is built using this data) and run represents the
data which is used to run the algorithm. We have four data
sets, each of 24 hours duration.

As an example, in configuration day1 day1, the algorithms
are trained using day1 data, i.e., the cumulative hazard func-
tion is built using day1 data and then the algorithm is also
run on day1 data. Results from this configuration validate the
effectiveness of survival analysis for opportunistic spectrum
access.

When using configuration day1 day2 the algorithms are
trained using day1 data but run on day2 data. This config-
uration helps us understand how the algorithms perform when
the training and running data are from different week days.
Note that in practice, the day1 day1 configuration does not
correspond to a realistic scenario, since the training has to
happen on some historical data and then the algorithm would
run on different data. Hence, this configuration is useful in
practice.

Yet another example is configuration wknd1 day1. This
configuration helps us determine if it is feasible to train the
algorithm on a weekend data set and run it on a week day
data set.

C. Metrics
We used the following metrics to measure performance of

the two algorithms. The first two metrics are common to both
the algorithms whereas the remaining four are defined for
Algorithm 1 only.
• White Space Utilization (WSU): Given the spectrum

occupancy of a channel, White Space Utilization (WSU)
of the channel by a secondary user is defined as the
fraction of total idle time used by the secondary user
for its own transmission. In another words, it is the ratio
of total duration of idle time used by the secondary user
for its own transmission to the total idle time duration in
the spectrum occupancy of the channel.

• PoI: For a given channel, the PoI of the secondary user is
defined as the probability that a transmission of the SU
collides with that of the PU. Thus, it is the ratio of the
number of times an SU transmission collides (or runs into
a busy period) with a PU transmission to the total number
of SU transmissions over a statistically long observation
period.

• Desirable Accept Ratio (DAR): This is defined as the
fraction of requests that were accepted and the corre-
sponding transmissions were successful. In these cases
the algorithm correctly predicted the remaining idle time.

• Undesirable Accept Ratio (UAR): This is defined as the
fraction of requests that were accepted and the corre-
sponding transmissions were not successful, i.e., these
transmissions resulted in collision with PU transmission.
In these cases the algorithm incorrectly predicted the
remaining idle time.
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Length Number of Number of Length Number of Number of
(sample
inter-
val)

occurrences day1
(%)

occurrences day2
(%)

(sample interval) occurrences
day1 (%)

occurrences day2
(%)

1 10 331 (39.75 %) 9866 (35.98 %) (10, 20] 760 (2.92 %) 1093 (3.99 %)
2 8523 (32.78 %) 8784 (32.03 %) (20, 30] 281 (1.08 %) 447 (1.63 %)
3 2174 (8.36 %) 2475 (9.03 %) (30, 40] 165 (0.63 %) 258 (0.94 %)
4 957 (3.68 %) 969 (3.53 %) (40, 50] 124 (0.48 %) 149 (0.54 %)
5 664 (2.55 %) 796 (2.9 %) (50, 500] 546 (2.1 %) 783 (2.86 %)
6 431 (1.66 %) 491 (1.79 %) (500, 5000] 64 (0.25 %) 133 (0.48 %)
7 308 (1.18 %) 361 (1.32 %) (5000, 10 000] 5 (0.02 %) 18 (0.07 %)
8 264 (1.02 %) 302 (1.1 %) (10 000, 17 871] 3 (0.01 %) 10 (0.04 %)
9 240 (0.92 %) 295 (1.08 %) (17 871, 132 171] 4 (0.01 %) 0 (0 %)
10 152 (0.58 %) 193 (0.7 %)

TABLE I
IDLE TIME DISTRIBUTION OF DAY1 AND DAY2 DATA

• Desirable Reject Ratio (DRR): This is defined as the
fraction of requests that were rejected and would have
resulted in collision with the PU if they were accepted.
So, in these cases the algorithm correctly predicted the
remaining idle time and rejected the requests.

• Undesirable Reject Ratio (URR): This is defined as the
fraction of requests that were rejected and would have
resulted in successful transmission if they were accepted.
In these cases the algorithm incorrectly predicted the
remaining idle time and rejected the requests. This metric
represents lost opportunities for the SU.

IV. RESULTS

Figure 2 shows the performance of Algorithm 1 in terms of
WSU as average request inter-arrival time varies. As request
inter-arrival time increases, WSU decreases since the offered
load from the SU decreases. It is interesting to note that the
performance of all the configurations in terms of WSU are
almost the same. Since the cumulative hazard functions of the
different days have almost the same slope for most of the
values between n = 0 to n = 100, the decision to accept or
reject a request is almost the same regardless of which day’s
data is used for training. This leads to nearly the same WSU
for different configurations. Thus, Algorithm 1 can be trained
using data from any of the days without significantly affecting
the WSU of the system.

From Figure 3, we observe that the PoI is always less
than the set threshold of 0.1. When we compare the PoI
of Algorithm 2 (see Figure 5) we notice that the PoI is an
order of magnitude less than that of Algorithm 2. Algorithm
1 only transmits for a fixed duration when the request is
granted. In our experiment the fixed duration is 200 ms,
which is a relatively short duration. In other words, when the
requested duration is short, Algorithm 1 is less aggressive than
Algorithm 2. Hence, the probability of an SU transmission
colliding with the PU is very low.

Figure 4 shows the performance of Algorithm 2 in terms
of WSU. As the average request inter-arrival time increases,
the SU exploits less white space for transmission. Hence,
the WSU decreases. We also notice that WSUs for the set
of configurations which are run on day1 (e.g., day1 day1,
day2 day1, wknd1 day1) are higher than those run on day2.
This can be explained by studying the cumulative hazard

functions of the two days. The cumulative hazard functions
of the data set are shown in Figure 6 and Figure 7. Since the
range of idle period is very large, we show the H(·) function
up to 100 sampling intervals in Figure 6, whereas Figure 7
shows the entire range of idle period. The cumulative hazard
functions of day1 and day2 have almost the same slope for
idle periods less than 100 sampling intervals. Hence, for a
given time of arrival of an SU request, the maximum duration
granted would be almost the same for the two days. So, the
idle time distribution of the two days has more influence than
the H(·) function on the WSU for the two days for grants
less than 100 sampling intervals. From Table I, we observe
that day1 has some very large idle times. For example, day1
has four idle times in the range (17 871, 132 171], which are
very large idle times, whereas the maximum idle time of day2
was 17 871. This leads to more transmission opportunities for
the SU when running over day1 data and gives rise to higher
WSU for day1 than for day2. Now for idle periods greater than
100 sampling periods (refer to Figure 7), for day2, the slope
of H(·) is very steep, whereas for day1 the slope flattens due
to the extremely long run lengths of idle periods. Thus, when
the time of arrival of a request falls into an idle period that has
lasted longer than 100 sampling intervals, day1 grants longer
transmission opportunities. Furthermore, when the elapsed idle
time is more than the longest idle period in the training data,
the transmission opportunity granted is set to the longest idle
period of training data. These two factors also contribute to
higher WSU for day1 than day2.

Since the cumulative hazard functions of the four days have
almost equal slope for most of the n values less than 100
sampling intervals, training the algorithm on data from any
day produces nearly the same WSU for that given day. Thus,
the curves for day1 day1, day2 day1 and wknd1 day1 are
close to each other.

When we compare the WSU performance of Algorithm 1
with Algorithm 2 for a given request inter-arrival time, we
notice that the WSU of Algorithm 1 is much lower than
that of Algorithm 2. The fundamental design of the two
algorithms gives rise to this behavior. For a given request,
Algorithm 2 maximizes the SU transmission duration, whereas
Algorithm 1 only checks to see if it can grant a request for
a constant transmission duration (200 ms in our experiment).
Thus, Algorithm 2 is able to achieve higher WSU.
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Fig. 2. WSU vs inter-arrival time for Algorithm 1
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Fig. 4. WSU vs inter-arrival time for Algorithm 2
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Figure 5 shows the variation of PoI as the inter-arrival time
of the requests increases. For all configurations, the PoI is
below the set threshold (0.1), thus satisfying the interference
constraint of the PU.

We also ran our two algorithms on the weekend data (wknd1
and wknd2 data) sets. We are not able to present the results
here due to space limitation, however, the results look very

similar to the week day results presented in this paper.
Our results indicate that the algorithms can be trained using

any data set and run on another data set as long as the
cumulative hazard functions are similar (in terms of slope).

We show the desirable and undesirable accept and reject
ratios of Algorithm 1 when the SU request inter-arrival time
is 200 ms. The URR is zero for all configurations. Thus
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Configuration DAR
(%)

UAR
(%)

DRR
(%)

URR
(%)

day1 day1 78.7 0.2 21.1 0
day2 day1 78.6 0.2 21.1 0
wknd1 day1 81.4 0.4 18.2 0
day2 day2 76.2 0.3 23.5 0
day1 day2 76.2 0.3 23.5 0
wknd1 day2 79.6 0.5 19.9 0

TABLE II
VARIOUS ACCEPT AND REJECT RATIOS FOR REQUEST INTER-ARRIVAL

TIME 200 MS FOR ALGORITHM 1

Algorithm 1 has no lost opportunities in all the configurations.
The algorithm also has very low UAR, which is good, since
this metric shows how well the algorithm avoids making bad
decisions in accepting a request. Although we have results for
other request inter-arrival times, we are not able to present
them due to space limitations. However, those results are
equally good.

All our experiment runs were for a very long duration
(approximately twenty-four hours). Hence, the number of
SU requests were very large. So, the computed performance
metrics of the two algorithms (e.g., WSU and PoI) had very
little variation across different runs.

V. CONCLUSION AND FUTURE WORK

We introduced DSA algorithms based on survival analysis
that make efficient use of white space in an LTE band,
even at very fine time scales. They are stochastic but non-
parametric and therefore do not require the assumption of a
particular distribution. This makes the implementation simple.
The tuning parameter for the algorithm is the probability of
successfully completing a transmission or, equivalently, the
PoI. Thus, it is easy to interpret and directly reflect desired
system performance metrics. We used real LTE band occu-
pancy data for the PU activity in our simulations. Our results
show that if the cumulative hazard functions are fairly similar
(in terms of slope) across different datasets, the algorithms
can be trained on one day’s dataset and run on another day’s
dataset without significant degradation of performance. This is
a very important property of the algorithms, since in practice,
the algorithms will be trained on historical data and then run in
real-time. We expect that in actual spectrum sharing systems
the PUs will be wary of sharing their spectrum with SUs
for fear of too much interference. This is addressed in our
algorithms by showing that the PoI is always below the preset
threshold in all configurations.

This paper provides an initial performance analysis of the
algorithms in an LTE band. Evaluation using datasets collected
in different bands at varying locations with other traffic
characteristics needs to be done. Other time scales need to be
investigated to show the range over which the algorithms are
effective. A theoretical performance analysis and comparison
with other prediction schemes are needed as well.

Depending on the SU application, alternative forms of the
algorithms presented in this paper can easily be developed
using the same fundamental approach. One can imagine a
form of spectrum requests that includes a maximum or desired
transmit time and a minimum acceptable time. The algorithm

would then either deny the request or return a grant duration
in the requested range. Another form could have the user
requesting a minimum initial grant and then the scheduler
can add additional follow-on transmission time, if available,
once the initial request has elapsed. An adaptive version of
the algorithm may be more attractive for implementation on
practical systems. It would update the estimated cumulative
hazard function as new idle periods appear in the spectrum.
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